Mutations sometimes increase contagiousness for evolving pathogens. During an epidemic, epidemiologists use viral genetics to infer a shared evolutionary history and connect this history to geographic spread. We propose a model that directly relates a pathogen's evolution to its spatial contagion dynamics -- effectively combining the two epidemiological paradigms of phylogenetic inference and self-exciting process modeling -- and apply this \emph{phylogenetic Hawkes process} to a Bayesian analysis of 23,422 viral cases from the 2014-2016 Ebola outbreak in West Africa. With a mere 1,610 samples providing RNA data, our model is able to detect subsets of the Ebola virus with significantly elevated rates of spatiotemporal propagation.
翻译:突变有时会增加进化病原体的传染性。在流行病期间,流行病学家利用病毒遗传学来推断共同的进化历史,并将这一历史与地理分布联系起来。我们提出了一个模式,将病原体的演变与其空间传染动态直接联系起来 -- -- 有效地结合两种植物遗传引力和自我激发过程模型的流行病学范式 -- -- 并将这一phemph{植物遗传鹰过程用于对西非2014-2016年埃博拉爆发后23,422个病毒病例的贝叶西亚分析。只有1,610个样本提供RNA数据,我们的模式能够检测埃博拉病毒的子集,其传染率显著提高。