Federated learning (FL) enables participating parties to collaboratively build a global model with boosted utility without disclosing private data information. Appropriate protection mechanisms have to be adopted to fulfill the opposing requirements in preserving \textit{privacy} and maintaining high model \textit{utility}. In addition, it is a mandate for a federated learning system to achieve high \textit{efficiency} in order to enable large-scale model training and deployment. We propose a unified federated learning framework that reconciles horizontal and vertical federated learning. Based on this framework, we formulate and quantify the trade-offs between privacy leakage, utility loss, and efficiency reduction, which leads us to the No-Free-Lunch (NFL) theorem for the federated learning system. NFL indicates that it is unrealistic to expect an FL algorithm to simultaneously provide excellent privacy, utility, and efficiency in certain scenarios. We then analyze the lower bounds for the privacy leakage, utility loss and efficiency reduction for several widely-adopted protection mechanisms including \textit{Randomization}, \textit{Homomorphic Encryption}, \textit{Secret Sharing} and \textit{Compression}. Our analysis could serve as a guide for selecting protection parameters to meet particular requirements.


翻译:联邦学习(FL)使参与方能够合作构建一个全球模式,在不披露私人数据信息的情况下提高效用;必须采用适当的保护机制,以满足在保存\ textit{privacy}和保持高模量{textit{plity}方面的相反要求;此外,联邦学习系统的任务是实现高写率{效率},以便能够进行大规模的示范培训和部署;我们提议一个统一的联邦学习框架,调和横向和纵向联合学习;根据这个框架,我们制定并量化隐私泄漏、效用损失和效率降低之间的权衡,这导致我们找到联邦学习系统的无自由Lunch(NFL)理论;NFL表示,期望FL算法同时提供极好的隐私、效用和效率是不现实的;然后,我们分析若干广泛采用的保护机制的隐私泄漏、效用损失和效率降低的较低界限,包括\ textimation{Randemization}、Textitriit{Homistric}能够选择我们安全文本和版本的特定分析。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员