Novel backscatter communication techniques enable battery-free sensor tags to interoperate with unmodified standard IoT devices, extending a sensor network's capabilities in a scalable manner. Without requiring additional dedicated infrastructure, the battery-free tags harvest energy from the environment, while the IoT devices provide them with the unmodulated carrier they need to communicate. A schedule coordinates the provision of carriers for the communications of battery-free devices with IoT nodes. Optimal carrier scheduling is an NP-hard problem that limits the scalability of network deployments. Thus, existing solutions waste energy and other valuable resources by scheduling the carriers suboptimally. We present DeepGANTT, a deep learning scheduler that leverages graph neural networks to efficiently provide near-optimal carrier scheduling. We train our scheduler with relatively small optimal schedules obtained from a constraint optimization solver, achieving a performance within 3% of the optimal scheduler. Without the need to retrain, DeepGANTT generalizes to networks 6x larger in the number of nodes and 10x larger in the number of tags than those used for training, breaking the scalability limitations of the optimal scheduler and reducing carrier utilization by up to 50% compared to the state-of-the-art heuristic. Our scheduler efficiently reduces energy and spectrum utilization in backscatter networks.
翻译:新颖的反射通信技术使得无电池传感器标签能够与未修改的标准物联网设备相互操作,以可扩展的方式扩展传感器网络的功能。在不需要额外的专用基础设施的情况下,无电池标签从环境中采集能量,而物联网设备为它们提供它们需要通信的未调制载波。调度协调无电池设备与物联网节点通信的载波的提供。最优载波调度是一种NP难问题,限制了网络部署的可扩展性。因此,现有解决方案通过次优的调度浪费能源和其他有价值的资源。我们提出DeepGANTT,一种利用图神经网络高效地提供接近最优载波调度的深度学习调度程序。我们使用约束优化求解器获得的相对较小的最优调度来训练我们的调度程序,实现了在最优调度的3%以内的性能。在无需重新训练的情况下,DeepGANTT可以推广到比训练所用的节点数量大6倍,标签数量大10倍的网络,打破了最优调度程序的可扩展性限制,并将载波利用率比最先进的启发式算法降低了高达50%。我们的调度程序在反射网络中高效地减少能源和频谱利用。