Online Tensor Factorization (OTF) is a fundamental tool in learning low-dimensional interpretable features from streaming multi-modal data. While various algorithmic and theoretical aspects of OTF have been investigated recently, a general convergence guarantee to stationary points of the objective function without any incoherence or sparsity assumptions is still lacking even for the i.i.d. case. In this work, we introduce a novel algorithm that learns a CANDECOMP/PARAFAC (CP) basis from a given stream of tensor-valued data under general constraints, including nonnegativity constraints that induce interpretability of the learned CP basis. We prove that our algorithm converges almost surely to the set of stationary points of the objective function under the hypothesis that the sequence of data tensors is generated by an underlying Markov chain. Our setting covers the classical i.i.d. case as well as a wide range of application contexts including data streams generated by independent or MCMC sampling. Our result closes a gap between OTF and Online Matrix Factorization in global convergence analysis \commHL{for CP-decompositions}. Experimentally, we show that our algorithm converges much faster than standard algorithms for nonnegative tensor factorization tasks on both synthetic and real-world data. Also, we demonstrate the utility of our algorithm on a diverse set of examples from an image, video, and time-series data, illustrating how one may learn qualitatively different CP-dictionaries from the same tensor data by exploiting the tensor structure in multiple ways.
翻译:在线电锯保理( OTF) 是学习从流式多模式数据中流出低维可解释性特征的基本工具。 虽然最近对 OTF 的各种算法和理论方面进行了调查, 但对于目标功能的固定点,即使对i. i. i. i. d. 来说, 即便对i. i. i. i. i. i. i. i. i. i. i. i. d. 案件, 以及一系列广泛的应用环境, 包括独立或MCMC 采样产生的数据流。 我们的结果通过全球趋同分析中OTF和在线矩阵化的差距, 导致对所学过的CP 基础的可解释性。 我们的算法几乎肯定会同客观功能的固定点组合, 假设是, 数据点数序列序列的顺序是由根基 Markov 系统生成的。 我们的典型的i. i. d. 以及一系列应用环境, 包括由独立或MC 采样采集的数据流产生的数据流。 我们通过全球趋同的OTF 和在线矩阵 Exmml化分析, 之间的差距, 我们的 liveralation lading lading lading lading lading lading lading lading lacal- dal