The influence of a variable is an important concept in the analysis of Boolean functions. The more general notion of influence of a set of variables on a Boolean function has four separate definitions in the literature. In the present work, we introduce a new definition of influence of a set of variables which is based on the auto-correlation function and develop its basic theory. Among the new results that we obtain are generalisations of the Poincar\'{e} inequality and the edge expansion property of the influence of a single variable. Further, we obtain new characterisations of resilient and bent functions using the notion of influence. We show that the previous definition of influence due to Fischer et al. (2002) and Blais (2009) is half the value of the auto-correlation based influence that we introduce. Regarding the other prior notions of influence, we make a detailed study of these and show that each of these definitions do not satisfy one or more desirable properties that a notion of influence may be expected to satisfy.
翻译:变量的影响是分析布林函数的一个重要概念。 更广义的一套变量对布林函数的影响概念在文献中有四个不同的定义。 在目前的工作中,我们引入了一套变量影响的新定义,该定义以自动关系功能为基础,并发展了其基本理论。我们获得的新结果包括Poincar\'{e}不平等的概括和单一变量影响的边缘扩展属性。此外,我们利用影响力概念获得了具有弹性和弯曲功能的新特征。我们表明,由于Fischer等人(2002年)和Blax(2009年)和Blax(2009年)的影响先前的定义是我们引入的基于自动关系的影响的一半价值。关于其他先前的影响概念,我们对这些定义进行详细研究,并表明这些定义中的每一个定义都不符合一种或多种预期影响概念会满足的可取属性。