Through the method of Learning Feedback Linearization, we seek to learn a linearizing controller to simplify the process of controlling a car to race autonomously. A soft actor-critic approach is used to learn a decoupling matrix and drift vector that effectively correct for errors in a hand-designed linearizing controller. The result is an exactly linearizing controller that can be used to enable the well-developed theory of linear systems to design path planning and tracking schemes that are easy to implement and significantly less computationally demanding. To demonstrate the method of feedback linearization, it is first used to learn a simulated model whose exact structure is known, but varied from the initial controller, so as to introduce error. We further seek to apply this method to a system that introduces even more error in the form of a gym environment specifically designed for modeling the dynamics of car racing. To do so, we posit an extension to the method of learning feedback linearization; a neural network that is trained using supervised learning to convert the output of our linearizing controller to the required input for the racing environment. Our progress towards these goals is reported and the next steps in their accomplishment are discussed.


翻译:通过“学习反馈线性化”方法,我们试图学习一个线性控制器,以简化控制汽车自动赛车的过程。使用软性行为者-加速法,学习一个脱钩矩阵和漂移矢量,以有效纠正手工设计的线性控制器中的错误。结果是一个完全线性控制器,可以用来使精密的线性系统理论能够设计易于执行和大大降低计算要求的路径规划和跟踪计划。为了演示反馈线性化方法,它首先用来学习一个模拟模型,它的确切结构是已知的,但与初始控制器不同,从而引入错误。我们进一步寻求将这种方法应用于一个系统,以专门设计用于模拟汽车赛车动态的体操环境的形式造成更多的错误。为此,我们扩展了学习反馈线性线性化方法;一个神经网络,经过培训,利用监督性学习将我们线性控制器的输出转换为对赛车环境所需的投入。我们报告了实现这些目标的进展,并讨论了其完成的下一步步骤。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员