This paper formulates a new problem, instance shadow detection, which aims to detect shadow instance and the associated object instance that cast each shadow in the input image. To approach this task, we first compile a new dataset with the masks for shadow instances, object instances, and shadow-object associations. We then design an evaluation metric for quantitative evaluation of the performance of instance shadow detection. Further, we design a single-stage detector to perform instance shadow detection in an end-to-end manner, where the bidirectional relation learning module and the deformable maskIoU head are proposed in the detector to directly learn the relation between shadow instances and object instances and to improve the accuracy of the predicted masks. Finally, we quantitatively and qualitatively evaluate our method on the benchmark dataset of instance shadow detection and show the applicability of our method on light direction estimation and photo editing.
翻译:本文提出了一个新的问题, 实例影子探测, 目的是检测在输入图像中投放每个阴影的影子实例和相关对象实例。 为了处理这项任务, 我们首先用阴影实例、 对象实例 和阴影对象关联的面具来编辑一个新的数据集。 然后我们设计一个评估指标, 用于对实例影子探测的性能进行定量评估。 此外, 我们设计一个单阶段探测器, 以端到端的方式进行实例影子探测, 在探测器中建议双向关系学习模块和变形的蒙面IoU头, 直接了解阴影实例和对象实例之间的关系, 并改进预测面具的准确性。 最后, 我们从量和质上评估我们关于实例影子检测基准数据集的方法, 并展示我们方法在光向估计和照片编辑方面的适用性。