Binary neural networks (BNNs), where both weights and activations are binarized into 1 bit, have been widely studied in recent years due to its great benefit of highly accelerated computation and substantially reduced memory footprint that appeal to the development of resource constrained devices. In contrast to previous methods tending to reduce the quantization error for training BNN structures, we argue that the binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability. In this paper, we re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance on the large-scale ImageNet dataset in terms of accuracy and training efficiency. To go further, we find that the proposed BNN model still has much potential to be compressed by making a better use of the efficient binary operations, without losing accuracy. In addition, the limited capacity of the BNN model can also be increased with the help of group execution. Based on these insights, we are able to improve the baseline with an additional 4~5% top-1 accuracy gain even with less computational cost. Our code will be made public at https://github.com/zhuogege1943/ftbnn.


翻译:近几年来,由于高速计算和大量减少记忆足迹带来的巨大好处,近年来对重力和活性被二分制成1位数的双线神经网络进行了广泛研究。与以往倾向于减少用于培训BNN结构的量化错误的方法相比,我们认为,二进制神经网络进程在尽量减少这种错误的目标方面具有越来越大的分界线性,这反过来又妨碍了BNN的偏向能力。在本文中,我们重新对适当的非线性模块进行重新调查并调整,以纠正这一矛盾,从而形成一个强大的基线,在大规模图像网络数据集中实现最先进的精确性能和培训效率。此外,我们发现,拟议的BNNN模型仍然有很大潜力通过更好地使用高效的二进制操作进行压缩,而不会失去准确性。此外,BNN模型的有限能力也可以随着集体执行的帮助而增加。基于这些洞察,我们甚至能够以4~5 %/1的顶级计算法来改进大规模图像网络数据库的精确性能。我们将在4~5%的顶级计算上降低我们的成本。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
110+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月26日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
Learning Discriminative Model Prediction for Tracking
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
110+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月26日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员