Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a lowdimensional latent representation space. Existing KG embedding approaches model entities andrelations in a KG by utilizing real-valued , complex-valued, or hypercomplex-valued (Quaternionor Octonion) representations, all of which are subsumed into a geometric algebra. In this work,we introduce a novel geometric algebra-based KG embedding framework, GeomE, which uti-lizes multivector representations and the geometric product to model entities and relations. Ourframework subsumes several state-of-the-art KG embedding approaches and is advantageouswith its ability of modeling various key relation patterns, including (anti-)symmetry, inversionand composition, rich expressiveness with higher degree of freedom as well as good general-ization capacity. Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
翻译:嵌入知识图形( KG) 的目的是将 KG 中的实体和关系嵌入一个低维潜在代表空间。 现有的 KG 嵌入方法模型实体和关系,方法是使用实际价值、 复杂价值或超复合价值( 量值) 的表示法( Qaterionor Octonion),所有这些表示法都包含在几何代数代数中。 在这项工作中,我们引入了一个新的基于 KG 的几何代数嵌入框架( GeomE ), 将多个矢量表示法和几何产品化为模型实体和关系。 我们的框架子集了几种最先进的KG 嵌入方法,并由于它有能力建模各种关键关系模式,包括( 反) 对称法、 转换和构成、 高度自由的丰富表达性以及良好的一般化能力。 多个基准知识图表的实验结果显示, 提议方法比现有的连接预测最新模型要好。