Temporal noise correlations are ubiquitous in quantum systems, yet often neglected in the analysis of quantum circuits due to the complexity required to accurately characterize and model them. Autoregressive moving average (ARMA) models are a well-known technique from time series analysis that model time correlations in data. By identifying the space of completely positive trace reserving (CPTP) quantum operations with a particular matrix manifold, we generalize ARMA models to the space of CPTP maps to parameterize and simulate temporally correlated noise in quantum circuits. This approach, denoted Schr\"odinger Wave ARMA (SchWARMA), provides a natural path for generalization of classic techniques from signal processing, control theory, and system identification for which ARMA models and linear systems are essential. This enables the broad theory of classical signal processing to be applied to quantum system simulation, characterization, and noise mitigation.
翻译:在量子系统中,时间噪音的关联无处不在,但在量子电路分析中常常被忽略,因为精确定性和建模所需的复杂性。自动递减移动平均模型是时间序列分析中的一种众所周知的技术,可以模拟数据的时间关系。通过确定带有特定矩阵元件的完全正微量值保留(CPTP)量子操作空间,我们将ARMA模型推广到CPTP地图空间,以参数化和模拟量子电路中与时间相关的噪音。这个称为Schr\'odinger WaveARMA(SchWARMA)的方法为信号处理、控制理论和系统识别等经典技术的概括化提供了自然路径,而ARMA模型和线性系统对于这些技术至关重要。这使得典型信号处理的广义理论能够应用于量子系统模拟、定性和减少噪音。