Cybersecurity is a crucial step in data protection to ensure user security and personal data privacy. In this sense, many companies have started to control and restrict access to their data using authentication systems. However, these traditional authentication methods, are not enough for ensuring data protection, and for this reason, behavioral biometrics have gained importance. Despite their promising results and the wide range of applications, biometric systems have shown to be vulnerable to malicious attacks, such as Presentation Attacks. For this reason, in this work, we propose to study a new approach aiming to deploy a presentation attack towards a keystroke authentication system. Our idea is to use Conditional Generative Adversarial Networks (cGAN) for generating synthetic keystroke data that can be used for impersonating an authorized user. These synthetic data are generated following two different real use cases, one in which the order of the typed words is known (ordered dynamic) and the other in which this order is unknown (no-ordered dynamic). Finally, both keystroke dynamics (ordered and no-ordered) are validated using an external keystroke authentication system. Results indicate that the cGAN can effectively generate keystroke dynamics patterns that can be used for deceiving keystroke authentication systems.


翻译:网络安全是数据保护的关键步骤,以确保用户安全和个人数据隐私。 从这个意义上讲,许多公司已开始控制和限制使用认证系统获取数据。 但是,这些传统的认证方法不足以确保数据保护,因此,行为生物鉴别学的重要性也日益增强。尽管取得了有希望的成果,而且应用范围很广,生物鉴别系统显示很容易受到恶意攻击,例如演示式攻击。为此,我们提议研究一种新的方法,旨在对键盘认证系统实施演示攻击。我们的想法是使用配置式基因反反反向网络(cGAN)来生成合成键盘点数据,这些数据可用于模拟授权用户。这些合成数据是在两个不同的实际使用案例之后生成的,一个案例是类型单词的顺序(按顺序排列的动态),另一个案例是这种顺序未知的(无顺序排序的动态),因此,我们提议研究一种新的方法,旨在对按键键盘验证系统(按顺序排列的和无顺序排列的动态)都使用外部键盘键盘验证系统。结果显示,CAN可以有效地将键盘用于键盘的系统。

0
下载
关闭预览

相关内容

带条件约束的GAN,在生成模型(D)和判别模型(G)的建模中均引入条件变量y(conditional variable y),使用额外信息y对模型增加条件,可以指导数据生成过程。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
Top
微信扫码咨询专知VIP会员