This paper studies asynchronous Federated Learning (FL) subject to clients' individual arbitrary communication patterns with the parameter server. We propose FedMobile, a new asynchronous FL algorithm that exploits the mobility attribute of the mobile FL system to improve the learning performance. The key idea is to leverage the random client-to-client communication in a mobile network to create additional indirect communication opportunities with the server via upload and download relaying. We prove that FedMobile achieves a convergence rate $O(\frac{1}{\sqrt{NT}})$, where $N$ is the number of clients and $T$ is the number of communication slots, and show that the optimal design involves an interesting trade-off on the best timing of relaying. Our analysis suggests that with an increased level of mobility, asynchronous FL converges faster using FedMobile. Experiment results on a synthetic dataset and two real-world datasets verify our theoretical findings.
翻译:本文根据客户个人任意与参数服务器的通信模式,对非同步的联邦学习(FL)进行了非任意研究。 我们提议FedMobile,这是一个新的非同步的FL算法,利用移动FL系统的流动性属性来改进学习绩效。 关键的想法是利用移动网络中的随机客户对客户的通信,通过上传和下载中继,与服务器创造额外的间接通信机会。 我们证明FedMobile实现了美元(frac{1unsqrt{NT ⁇ )的趋同率,即客户人数为NN$,通信插座数为$T$。 我们的分析表明,最佳设计涉及在最佳中继时间上进行有趣的交换。 我们的分析表明,随着流动性的提高,使用FedMobile,无同步的FL会更快地连接到服务器。 合成数据集和两个真实世界数据集的实验结果证实了我们的理论结论。