The diameter $k$-clustering problem is the problem of partitioning a finite subset of $\mathbb{R}^d$ into $k$ subsets called clusters such that the maximum diameter of the clusters is minimized. One early clustering algorithm that computes a hierarchy of approximate solutions to this problem (for all values of $k$) is the agglomerative clustering algorithm with the complete linkage strategy. For decades, this algorithm has been widely used by practitioners. However, it is not well studied theoretically. In this paper, we analyze the agglomerative complete linkage clustering algorithm. Assuming that the dimension $d$ is a constant, we show that for any $k$ the solution computed by this algorithm is an $O(\log k)$-approximation to the diameter $k$-clustering problem. Our analysis does not only hold for the Euclidean distance but for any metric that is based on a norm. Furthermore, we analyze the closely related $k$-center and discrete $k$-center problem. For the corresponding agglomerative algorithms, we deduce an approximation factor of $O(\log k)$ as well.


翻译:直径 $k$ 集群问题在于将一个限定的子集 $mathbb{R ⁇ d$ 分割成 $k$ 子集的问题,这个子集被称为 数组,这样可以最大限度地缩小组群的最大直径。一个早期群集算算法,计算出这一问题的大致解决办法(所有值为$k$)的等级,是具有完整联系战略的聚集算法。几十年来,这种算法被从业人员广泛使用。然而,这个算法在理论上没有很好地加以研究。在本文中,我们分析聚合集成完整链接群群集算法。假设维度 $d是一个常数,我们显示,对于任何以美元计算的方块,这个算法所计算的解决办法是 $(\ log k) 与直径 $k$- 聚集问题相近。我们的分析不仅维持着Euclidean 的距离, 而且对于任何基于规范的测量度。此外,我们分析与 $- k- center 和 likee- $- center enter 问题密切相关的 。对于相应的凝聚算算算法, 我们推算出一个 $- klog 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员