With the rising applications implemented in different domains, it is inevitable to require databases to adopt corresponding appropriate data models to store and exchange data derived from various sources. To handle these data models in a single platform, the community of databases introduces a multi-model database. And many vendors are improving their products from supporting a single data model to being multi-model databases. Although this brings benefits, spending lots of enthusiasm to master one of the multi-model query languages for exploring a database is unfriendly to most users. Therefore, we study using keyword searches as an alternative way to explore and query multi-model databases. In this paper, we attempt to utilize quantum physics's probabilistic formalism to bring the problem into vector spaces and represent events (e.g., words) as subspaces. Then we employ a density matrix to encapsulate all the information over these subspaces and use density matrices to measure the divergence between query and candidate answers for finding top-\textit{k} the most relevant results. In this process, we propose using pattern mining to identify compounds for improving accuracy and using dimensionality reduction for reducing complexity. Finally, empirical experiments demonstrate the performance superiority of our approaches over the state-of-the-art approaches.


翻译:随着不同领域应用的不断增多,不可避免地要求数据库采用相应的适当数据模型来储存和交换来自不同来源的数据。为了在一个平台上处理这些数据模型,数据库群引入了一个多模式数据库。许多供应商正在改进其产品,从支持一个单一数据模型到成为多模式数据库。虽然这样做带来了好处,但花大量热情来掌握一个用于探索数据库的多模式查询语言对于大多数用户来说是不友好的。因此,我们研究使用关键词搜索作为探索和查询多模式数据库的替代方法。在本文件中,我们试图利用量子物理的概率化形式主义将问题带入矢量空间并代表事件(如文字)作为子空间。然后我们用一个密度矩阵来汇总这些子空间上的所有信息,并利用密度矩阵来衡量查询和候选答案之间的差异,以找到最相关的结果。在此过程中,我们建议使用模式采矿来查明化合物,以提高准确性,并使用量子化来减少复杂性。最后,我们的经验实验显示了我们方法在状态上的表现优势。

0
下载
关闭预览

相关内容

Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
专知会员服务
159+阅读 · 2020年1月16日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2015年3月1日
VIP会员
相关VIP内容
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员