Model-based paradigms for decision-making and control are becoming ubiquitous in robotics. They rely on the ability to efficiently learn a model of the system from data. Structured Mechanical Models (SMMs) are a data-efficient black-box parameterization of mechanical systems, typically fit to data by minimizing the error between predicted and observed accelerations or next states. In this work, we propose a methodology for fitting SMMs to data by minimizing the discrete Euler-Lagrange residual. To study our methodology, we fit models to joint-angle time-series from undamped and damped double-pendulums, studying the quality of learned models fit to data with and without observation noise. Experiments show that our methodology learns models that are better in accuracy to those of the conventional schemes for fitting SMMs. We identify use cases in which our method is a more appropriate methodology. Source code for reproducing the experiments is available at https://github.com/sisl/delsmm.
翻译:以模型为基础的决策和控制模式正在机器人中变得无处不在,它们依赖从数据中有效学习系统模型的能力。结构机械模型(SMMs)是机械系统的数据效率黑箱参数化,通常适合数据,通过尽可能减少预测加速度和观测加速度之间或下一个状态之间的错误而使数据尽可能符合数据。在这项工作中,我们建议了一种方法,通过尽量减少离散的Euler-Lagrange残留物,使SMMs与数据相匹配。为了研究我们的方法,我们将模型与未加装和堆积的双元体的混合时间序列相匹配,研究与观测噪音和无观测噪音的数据相匹配的学习模型的质量。实验表明,我们的方法学习模型的准确性要好于常规机制的模型,以便安装SMMMs。我们找出了使用方法更适当方法的案例。复制实验的源代码可在https://github.com/sisl/delsmm查阅。