In recommendation systems, the existence of the missing-not-at-random (MNAR) problem results in the selection bias issue, degrading the recommendation performance ultimately. A common practice to address MNAR is to treat missing entries from the so-called "exposure" perspective, i.e., modeling how an item is exposed (provided) to a user. Most of the existing approaches use heuristic models or re-weighting strategy on observed ratings to mimic the missing-at-random setting. However, little research has been done to reveal how the ratings are missing from a causal perspective. To bridge the gap, we propose an unbiased and robust method called DENC (De-bias Network Confounding in Recommendation) inspired by confounder analysis in causal inference. In general, DENC provides a causal analysis on MNAR from both the inherent factors (e.g., latent user or item factors) and auxiliary network's perspective. Particularly, the proposed exposure model in DENC can control the social network confounder meanwhile preserves the observed exposure information. We also develop a deconfounding model through the balanced representation learning to retain the primary user and item features, which enables DENC generalize well on the rating prediction. Extensive experiments on three datasets validate that our proposed model outperforms the state-of-the-art baselines.


翻译:在建议系统中,缺失非随机(MNAR)问题的存在导致选择偏见问题,最终降低建议绩效。解决 MNAR的一个常见做法是,从所谓的“接触”角度处理缺失条目,即模拟某一物品如何接触(提供)用户,现有方法大多使用观察到的评级的超自然模型或重新加权战略来模仿缺失随机环境。然而,很少进行研究,从因果角度揭示评级如何缺失的问题。为弥合差距,我们建议采用一种不偏袒和稳健的方法,即根据对因果关系推断的比较分析,将缺失条目从所谓的“接触”角度处理,即模拟某一物品如何接触(提供)用户(提供),以及辅助网络的视角。特别是,DENC的拟议暴露模型能够控制社会网络的聚合者,同时保存观察到的暴露信息。我们还开发了一种通过平衡的模拟模型,即DENC (D-BER) (D-C) (根据建议创建的网络),通过平衡的模拟模型,使我们的三大用户数据基准得以保存。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
144+阅读 · 2021年2月3日
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Denoising User-aware Memory Network for Recommendation
Arxiv
2+阅读 · 2021年7月12日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Top
微信扫码咨询专知VIP会员