Evolutionary multitasking (EMT) algorithms typically require tailored designs for knowledge transfer, in order to assure convergence and optimality in multitask optimization. In this paper, we explore designing a systematic and generalizable knowledge transfer policy through Reinforcement Learning. We first identify three major challenges: determining the task to transfer (where), the knowledge to be transferred (what) and the mechanism for the transfer (how). To address these challenges, we formulate a multi-role RL system where three (groups of) policy networks act as specialized agents: a task routing agent incorporates an attention-based similarity recognition module to determine source-target transfer pairs via attention scores; a knowledge control agent determines the proportion of elite solutions to transfer; and a group of strategy adaptation agents control transfer strength by dynamically controlling hyper-parameters in the underlying EMT framework. Through pre-training all network modules end-to-end over an augmented multitask problem distribution, a generalizable meta-policy is obtained. Comprehensive validation experiments show state-of-the-art performance of our method against representative baselines. Further in-depth analysis not only reveals the rationale behind our proposal but also provide insightful interpretations on what the system have learned.
翻译:进化多任务(EMT)算法通常需要针对知识迁移进行定制化设计,以确保多任务优化中的收敛性与最优性。本文探索通过强化学习设计一种系统化且可泛化的知识迁移策略。我们首先识别出三大挑战:确定迁移任务(何处)、待迁移知识(何物)以及迁移机制(如何)。为应对这些挑战,我们构建了一个多角色强化学习系统,其中三组策略网络作为专用智能体运作:任务路由智能体通过集成基于注意力的相似性识别模块,依据注意力分数确定源-目标迁移对;知识控制智能体决定待迁移精英解的比例;策略自适应智能体组通过动态调控底层EMT框架中的超参数来控制迁移强度。通过在增强的多任务问题分布上对所有网络模块进行端到端预训练,我们获得了一个可泛化的元策略。综合验证实验表明,相较于代表性基线方法,本方法取得了最先进的性能。进一步的深入分析不仅揭示了本方案的设计原理,还对其学习到的系统行为提供了具有洞察力的解释。