We disucss a statistical estimation problem of an optimal dividend barrier when the surplus process follows a L\'{e}vy insurance risk process. The optimal dividend barrier is defined as the level of the barrier that maximizes the expectation of the present value of all dividend payments until ruin. In this paper, an estimatior of the expected present value of all dividend payments is defined based on ``quasi-process'' in which sample paths are generated by shuffling increments of a sample path of the L\'{e}vy insurance risk process. The consistency of the optimal dividend barrier estimator is shown. Moreover, our approach is examined numerically in the case of the compound Poisson risk model perturbed by diffusion.
翻译:当盈余过程遵循了L\'{e}vy保险风险过程时,我们排除了最佳股息障碍的统计估计问题。最佳股息障碍被定义为最大限度地提高所有股息支付到毁灭之前的当前价值预期值的屏障水平。在本文中,所有股息支付预期现值的估测者是根据“quasi-process”定义的,在这个过程中,抽样路径是通过对L\'{e}vy保险风险过程的抽样路径的冲洗增加而形成的。最佳股息障碍估计器的一致性被显示。此外,对于扩散所渗透的复合Poisson风险模型,我们的方法也在数字上进行了研究。