The use of large arrays might be the solution to the capacity problems in wireless communications. The signal-to-noise ratio (SNR) grows linearly with the number of array elements $N$ when using Massive MIMO receivers and half-duplex relays. Moreover, intelligent reflecting surfaces (IRSs) have recently attracted attention since these can relay signals to achieve an SNR that grows as $N^2$, which seems like a major benefit. In this paper, we use a deterministic propagation model for a planar array of arbitrary size, to demonstrate that the mentioned SNR behaviors, and associated power scaling laws, only apply in the far-field. They cannot be used to study the regime where $N\to\infty$. We derive an exact channel gain expression that captures three essential near-field behaviors and use it to revisit the power scaling laws. We derive new finite asymptotic SNR limits but also conclude that these are unlikely to be approached in practice. We further prove that an IRS-aided setup cannot achieve a higher SNR than an equal-sized Massive MIMO setup, despite its faster SNR growth. We quantify analytically how much larger the IRS must be to achieve the same SNR. Finally, we show that an optimized IRS does not behave as an "anomalous" mirror but can vastly outperform that benchmark.
翻译:大型阵列的使用可能是无线通信能力问题的解决办法。 信号对噪音比率( SNR)随着阵列元素数量的增加而线性地增长。 当使用大型 MIM 接收器和半双倍中继器时, 信号对噪音比率( SNR) 随着阵列元素数量的增加而线性地增长。 此外, 智能反射表面( IRS) 近来引起关注, 因为智能反射表面( IRS) 可以传递信号, 以实现以美元增长( $N $2) 的 SNR, 这似乎是一个重大的好处。 在本文中, 我们使用一个任意规模的平面阵列阵列阵列的确定性传播模式, 以证明所提到的SNR行为和相关的权力缩放法( $NMR) 只能在远处适用。 它们不能用于研究 $N\ to\\\\\ inftylefty( $infty) 。 我们获得精确的频道增速表达方式, 能够像SIMO那样快速地展示“ ” 。