Hyperspectral imaging offers new perspectives for diverse applications, ranging from the monitoring of the environment using airborne or satellite remote sensing, precision farming, food safety, planetary exploration, or astrophysics. Unfortunately, the spectral diversity of information comes at the expense of various sources of degradation, and the lack of accurate ground-truth "clean" hyperspectral signals acquired on the spot makes restoration tasks challenging. In particular, training deep neural networks for restoration is difficult, in contrast to traditional RGB imaging problems where deep models tend to shine. In this paper, we advocate instead for a hybrid approach based on sparse coding principles that retains the interpretability of classical techniques encoding domain knowledge with handcrafted image priors, while allowing to train model parameters end-to-end without massive amounts of data. We show on various denoising benchmarks that our method is computationally efficient and significantly outperforms the state of the art.
翻译:超光谱成像为各种应用提供了新的视角,包括利用空中或卫星遥感、精密耕作、食品安全、行星探索或天体物理学来监测环境。不幸的是,光谱信息的多样性是以各种降解源为代价的,而当场获得的准确的地面真实性“清洁”超光谱信号的缺乏,使得恢复工作面临挑战。 特别是,培训深海神经网络进行修复是困难的,而传统RGB成像问题则往往发光。 在本文中,我们主张采用基于稀有编码原则的混合方法,保留古典技术以手工制作的图像前科编码域知识的可解释性,同时允许在没有大量数据的情况下培训模型参数端到端。我们展示了各种分解基准,即我们的方法在计算上效率很高,大大超越了艺术的状态。