This paper is an exposition of algorithms for finding one or all equilibria of a bimatrix game (a two-player game in strategic form) in the style of a chapter in a graduate textbook. Using labeled "best-response polytopes", we present the Lemke-Howson algorithm that finds one equilibrium. We show that the path followed by this algorithm has a direction, and that the endpoints of the path have opposite index, in a canonical way using determinants. For reference, we prove that a number of notions of nondegeneracy of a bimatrix game are equivalent. The computation of all equilibria of a general bimatrix game, via a description of the maximal Nash subsets of the game, is canonically described using "complementary pairs" of faces of the best-response polytopes.
翻译:本文展示了一种算法, 用于在研究生教科书中的章节样式中找到一个或全部的比马特基游戏( 以战略形式出现的双人游戏) 的平衡。 我们用标签的“ 最佳反应多面体 ”, 展示了找到一个平衡的 Lemke- Howson 算法。 我们展示了这个算法所遵循的路径有一个方向, 并且路径的终点有相反的索引, 使用决定因素的方式是直截了当的。 参考一下, 我们证明一系列比马特基游戏的非变性概念是等效的。 通过对游戏中最大纳什子子的描述, 一个普通比马特理游戏的所有等式的计算方法, 是用最佳反应多面的“ 补充配对 ” 来用最能反应多面面的“ 补充配对 ” 来描述的。