This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR FAC) cochlea models and leaky integrate and fire (LIF) neurons. Additionally, we propose an event-driven SpectroTemporal Receptive Field (STRF) Feature Extraction using Adaptive Selection Thresholds (FEAST). It is tested on the TIDIGTIS benchmark and compared with current event-based auditory signal processing approaches and neural networks.
翻译:本文介绍了在现场可编程门阵列(FPGA)上以事件为基础的双声波切片系统可重新分类的数字实施情况,其中包括一对配有快速动作压缩(CAR FAC)的对称反应器阵列模型和漏泄整合与火灾神经元。此外,我们建议采用适应性选择阈值(FEART),采用事件驱动的分光场(STRF)特征抽取功能,根据TIDIGTIS基准进行测试,并与当前以事件为基础的信号处理方法和神经网络进行比较。