In this work we propose a non-contrastive method for anomaly detection and segmentation in images, that benefits both from a modern machine learning approach and a more classic statistical detection theory. The method consists of three phases. First, features are extracted by making use of a multi-scale image Transformer architecture. Then, these features are fed into a U-shaped Normalizing Flow that lays the theoretical foundations for the last phase, which computes a pixel-level anomaly map, and performs a segmentation based on the a contrario framework. This multiple hypothesis testing strategy permits to derive a robust automatic detection threshold, which is key in many real-world applications, where an operational point is needed. The segmentation results are evaluated using the Intersection over Union (IoU) metric, and for assessing the generated anomaly maps we report the area under the Receiver Operating Characteristic curve (ROC-AUC) at both image and pixel level. For both metrics, the proposed approach produces state-of-the-art results, ranking first in most MvTec-AD categories, with a mean pixel-level ROC- AUC of 98.74%. Code and trained models are available at https://github.com/mtailanian/uflow.


翻译:在这项工作中,我们建议一种非重叠的方法,用于图像异常的探测和分解,这种方法既得益于现代机器学习方法,又得益于更经典的统计检测理论。该方法由三个阶段组成。首先,通过使用多尺度图像变异结构来提取特征。然后,这些特征被输入一个U形的标准化流程,为最后一个阶段奠定理论基础,该流程将计算像素级异常图,并根据一个相反的框架进行分解。这一多重假设测试战略允许得出一个强大的自动检测阈值,这是许多实际应用中的关键,需要操作点的地方。对分解结果进行了评估,使用了跨联盟(IoU)的跨区测量,并用于评估生成的异常地图,我们在图像和像素级的收视器操作特征曲线(ROC-AUSC)下报告区域。对于这两种衡量标准,拟议方法产生“最新”结果,在大多数Mv Tec-AD类别中排名第一,在98.74/AUB/AMLA/C流中的平均位模型中,可得到。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月21日
FewSOME: Few Shot Anomaly Detection
Arxiv
0+阅读 · 2023年1月20日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员