We outline a phenomenological theory of evolution and origin of life by combining the formalism of classical thermodynamics with a statistical description of learning. The maximum entropy principle constrained by the requirement for minimization of the loss function is employed to derive a canonical ensemble of organisms (population), the corresponding partition function (macroscopic counterpart of fitness) and free energy (macroscopic counterpart of additive fitness). We further define the biological counterparts of temperature (biological temperature) as the measure of stochasticity of the evolutionary process and of chemical potential (evolutionary potential) as the amount of evolutionary work required to add a new trainable variable (such as an additional gene) to the evolving system. We then develop a phenomenological approach to the description of evolution, which involves modeling the grand potential as a function of the biological temperature and evolutionary potential. We demonstrate how this phenomenological approach can be used to study the "ideal mutation" model of evolution and its generalizations. Finally, we show that, within this thermodynamics framework, major transitions in evolution, such as the transition from an ensemble of molecules to an ensemble of organisms, that is, the origin of life, can be modeled as a special case of bona fide physical phase transitions that are associated with the emergence of a new type of grand canonical ensemble and the corresponding new level of description
翻译:我们通过将古典热力学的正规主义与对学习的统计描述结合起来,勾勒出一种进化和生命起源的动物生物学理论,将古典热力学的进化过程和化学潜力(进化潜力)作为进化过程和化学潜力(进化潜力)的相近性衡量尺度,作为向进化系统添加一个新的可训练变量(如新增基因)所需的进化工作数量。我们随后采用受损失功能要求限制的最大进化原则,以得出生物(人口)的能量组合(体系的成份),相应的分割函数函数函数函数(与体格相配)和自由能量(与体格相配)和自由能量(与体格相配)。我们进一步将温度(生物温度)的生物对应物学方法定义为进化过程和化学潜力(进化潜力)的相近性测量尺度。我们发现,在这个热力框架范围内,进化过程的主要进化变量(如新增基因基因)的进化类型(如物理阶段的变化,从生物温度的巨型向进化阶段转变,可以作为进化的正态的正态的正态的进化阶段,从一个特殊进化阶段的进化阶段,可以作为进化的进化模式的进化的进化的进化。