Obstacle avoidance is an essential topic in the field of autonomous drone research. When choosing an avoidance algorithm, many different options are available, each with their advantages and disadvantages. As there is currently no consensus on testing methods, it is quite challenging to compare the performance between algorithms. In this paper, we propose AvoidBench, a benchmarking suite which can evaluate the performance of vision-based obstacle avoidance algorithms by subjecting them to a series of tasks. Thanks to the high fidelity of multi-rotors dynamics from RotorS and virtual scenes of Unity3D, AvoidBench can realize realistic simulated flight experiments. Compared to current drone simulators, we propose and implement both performance and environment metrics to reveal the suitability of obstacle avoidance algorithms for environments of different complexity. To illustrate AvoidBench's usage, we compare three algorithms: Ego-planner, MBPlanner, and Agile-autonomy. The trends observed are validated with real-world obstacle avoidance experiments.
翻译:避免障碍是自主无人机研究领域的一个基本主题。 当选择一种避险算法时, 有许多不同的选择, 每个选择都有其优缺点。 由于目前没有关于测试方法的共识, 比较算法之间的性能相当困难。 在本文中, 我们提议了“ 避险堡”, 这是一种基准套件, 可以通过让这些算法执行一系列任务来评价基于视觉的避免障碍算法的性能。 由于罗托尔斯和United3D的虚拟场景的多轨道动态的高度忠诚性, 避免Bench 能够实现现实的模拟飞行实验。 与目前的无人机模拟模型相比, 我们提出并实施性和环境指标, 以揭示避免障碍算法对不同复杂环境的适宜性。 为说明避免贝奇的用法, 我们比较了三种算法: Ego- planner, MBPlanner 和 Agile- autoomic。 观察到的趋势与真实的避免障碍实验相验证。