Implicit neural rendering, especially Neural Radiance Field (NeRF), has shown great potential in novel view synthesis of a scene. However, current NeRF-based methods cannot enable users to perform user-controlled shape deformation in the scene. While existing works have proposed some approaches to modify the radiance field according to the user's constraints, the modification is limited to color editing or object translation and rotation. In this paper, we propose a method that allows users to perform controllable shape deformation on the implicit representation of the scene, and synthesizes the novel view images of the edited scene without re-training the network. Specifically, we establish a correspondence between the extracted explicit mesh representation and the implicit neural representation of the target scene. Users can first utilize well-developed mesh-based deformation methods to deform the mesh representation of the scene. Our method then utilizes user edits from the mesh representation to bend the camera rays by introducing a tetrahedra mesh as a proxy, obtaining the rendering results of the edited scene. Extensive experiments demonstrate that our framework can achieve ideal editing results not only on synthetic data, but also on real scenes captured by users.
翻译:隐性神经外貌,特别是神经辐射场( NERF) 在对场景的新视角合成中显示出巨大的潜力。 然而, 以 NERF 为基础的当前方法无法让用户在场景中进行用户控制的形状变形。 虽然现有作品已经根据用户的局限性提出了修改亮度场面的一些方法, 但修改仅限于色彩编辑或对象翻译和旋转。 在本文中, 我们提议一种方法, 使用户能够对场景的隐含表示进行可控形状变形, 并合成编辑场景的新视图图像, 而不对网络进行再培训 。 具体地说, 我们建立被提取的清晰网格代表与目标场景的隐含神经显示之间的通信。 用户可以首先使用精心开发的基于网形的变形方法来改变场景的网格代表。 我们的方法将用户从网格代表中进行编辑, 通过引入四经编辑场景的图案结果来弯曲。 广泛实验表明, 我们的框架可以实现理想的编辑结果, 不仅在合成数据上, 也可以在真实场景中被用户拍摄。