In recent years, researchers have achieved great success in applying Deep Reinforcement Learning (DRL) algorithms to Real-time Strategy (RTS) games, creating strong autonomous agents that could defeat professional players in StarCraft~II. However, existing approaches to tackle full games have high computational costs, usually requiring the use of thousands of GPUs and CPUs for weeks. This paper has two main contributions to address this issue: 1) We introduce Gym-$\mu$RTS (pronounced "gym-micro-RTS") as a fast-to-run RL environment for full-game RTS research and 2) we present a collection of techniques to scale DRL to play full-game $\mu$RTS as well as ablation studies to demonstrate their empirical importance. Our best-trained bot can defeat every $\mu$RTS bot we tested from the past $\mu$RTS competitions when working in a single-map setting, resulting in a state-of-the-art DRL agent while only taking about 60 hours of training using a single machine (one GPU, three vCPU, 16GB RAM). See the blog post at https://wandb.ai/vwxyzjn/gym-microrts-paper/reports/Gym-RTS-Toward-Affordable-Deep-Reinforcement-Learning-Research-in-Real-Time-Strategy-Games--Vmlldzo2MDIzMTg and the source code at https://github.com/vwxyzjn/gym-microrts-paper


翻译:近年来,研究人员在将深强化学习算法(DRL)应用到实时战略(RTS)游戏方面取得了巨大成功,创建了强大的自主代理器,可以击败StarCraft~II中的专业球员。然而,现有的全面游戏方法具有很高的计算成本,通常需要使用数千个GPU和CPU几个星期。本文有两个主要贡献来解决这个问题:1)我们引入Gym-$mu$RTS(宣传的“Gym-miro-RTS”)作为快速运行RL环境,用于全场RTS研究,2)我们展示了一套技术,可以将DRL用于全场比赛中的球员击败。我们最训练有素的机器人可以击败我们在过去的$\mu$RTS bot比赛中测试过的每一场$\muw$RTS比赛,结果是一个快速的RDRLARRR,而仅利用一台机器进行大约60小时的培训(一个GPO、三个GMMRIS/MRAB)。

1
下载
关闭预览

相关内容

RTS:Real-Time Systems。 Explanation:实时系统。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/journals/rts/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Reinforcement Learning for Quantitative Trading
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员