An increasing body of work has recognized the importance of exploiting machine learning (ML) advancements to address the need for efficient automation in extracting access control attributes, policy mining, policy verification, access decisions, etc. In this work, we survey and summarize various ML approaches to solve different access control problems. We propose a novel taxonomy of the ML model's application in the access control domain. We highlight current limitations and open challenges such as lack of public real-world datasets, administration of ML-based access control systems, understanding a black-box ML model's decision, etc., and enumerate future research directions.
翻译:越来越多的工作认识到利用机器学习(ML)进展的重要性,以满足在提取出入控制属性、政策采矿、政策核查、出入决定等方面实现高效自动化的需要。 在这项工作中,我们调查并总结了各种出入控制办法,以解决不同的出入控制问题。我们提议对出入控制领域的ML模型应用进行新的分类。我们强调目前存在的局限性和公开挑战,如缺乏公共真实世界数据集、管理基于ML的出入控制系统、理解黑箱ML模式的决定等,以及列举今后的研究方向。