Cookie banners, the pop ups that appear to collect your consent for data collection, are a tempting ground for dark patterns. Dark patterns are design elements that are used to influence the user's choice towards an option that is not in their interest. The use of dark patterns renders consent elicitation meaningless and voids the attempts to improve a fair collection and use of data. Can machine learning be used to automatically detect the presence of dark patterns in cookie banners? In this work, a dataset of cookie banners of 300 news websites was used to train a prediction model that does exactly that. The machine learning pipeline we used includes feature engineering, parameter search, training a Gradient Boosted Tree classifier and evaluation. The accuracy of the trained model is promising, but allows a lot of room for improvement. We provide an in-depth analysis of the interdisciplinary challenges that automated dark pattern detection poses to artificial intelligence. The dataset and all the code created using machine learning is available at the url to repository removed for review.
翻译:Cookie 横幅, 似乎是收集您对数据收集的同意的弹出, 是黑暗模式的诱人之地。 黑暗模式是用来影响用户选择不符合他们利益的选项的设计元素。 使用暗型使得同意的产生毫无意义, 使改善公平收集和使用数据的尝试无效。 机器学习能够用来自动检测饼干横幅中的暗型的存在吗? 在此工作中, 使用300个新闻网站的饼干横幅数据集来训练一个完全如此的预测模型。 我们使用的机器学习管道包括地貌工程、 参数搜索、 训练一个“ 梯子” 树分类器和评价。 受过训练的模型的准确性很有希望, 但允许大量改进空间。 我们提供对自动暗型探测给人工智能带来的跨学科挑战的深入分析。 数据集和所有使用机器学习生成的代码都可以在 URL 中存储, 以供审查 。