We study the complexity of the classic capacitated k-median and k-means problems parameterized by the number of centers, k. These problems are notoriously difficult since the best known approximation bound for high dimensional Euclidean space and general metric space is $\Theta(\log k)$ and it remains a major open problem whether a constant factor exists. We show that there exists a $(3+\epsilon)$-approximation algorithm for the capacitated k-median and a $(9+\epsilon)$-approximation algorithm for the capacitated k-means problem in general metric spaces whose running times are $f(\epsilon,k) n^{O(1)}$. For Euclidean inputs of arbitrary dimension, we give a $(1+\epsilon)$-approximation algorithm for both problems with a similar running time. This is a significant improvement over the $(7+\epsilon)$-approximation of Adamczyk et al. for k-median in general metric spaces and the $(69+\epsilon)$-approximation of Xu et al. for Euclidean k-means.
翻译:我们研究了以中心数量为参数的经典电能 k- 中位元和 k- 平均值问题的复杂性, k。 这些问题非常困难, 因为对高维欧化空间和普通度空间最著名的近似值是$\ theta(\ log k) $, 而对于任意性的 Euclidean 投入而言,我们给出了一个很大的开放问题, 是否存在一个恒定因素。 我们表明, 存在一种用于电能 k- 中位值的3 ⁇ epsilon 和 $( 9 ⁇ epsilon) 和 $( e- e- eqylon) 和 $- liplum 等普通度空间的 k- yczylon 和 $- suclum 和 exqu- eximlum 的 k- eximlon 和 su- exqu- su- su- eximlon 和 as- as- exum- exum- eximlon) 和 su- su- su- su- su- as- eximlum- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- su- s) su- su- su- su- su- su- su- su- su- su- su- su- su- su- su-