In this work, we consider the modeling of inclusions in the material using an unfitted finite element method. In the unfitted methods, structured background meshes are used and only the underlying finite element space is modified to incorporate the discontinuities, such as inclusions. Hence, the unfitted methods provide a more flexible framework for modeling the materials with multiple inclusions. We employ the method of Lagrange multipliers for enforcing the interface conditions between the inclusions and matrix, this gives rise to the linear system of equations of saddle point type. We utilize the Uzawa method for solving the saddle point system and propose preconditioning strategies for primal and dual systems. For the dual systems, we review and compare the preconditioning strategies that are developed for FETI and SIMPLE methods. While for the primal system, we employ a tailored multigrid method specifically developed for the unfitted meshes. Lastly, the comparison between the proposed preconditioners is made through several numerical experiments.
翻译:在这项工作中,我们考虑采用不适宜限定元素法对材料中所含内容进行建模。在不合适的方法中,使用结构化背景模层,只修改基本限制元素空间,以纳入不连续因素,例如包容。因此,不合适的方法为以多重包容制对材料进行建模提供了一个更灵活的框架。我们采用拉格兰格乘数方法,以强制纳入和矩阵之间的界面条件,从而形成马鞍点方程的线性系统。我们使用Uzawa方法解决支撑点系统,并为原始和双重系统提出先决条件战略。对于双重系统,我们审查并比较为FETI和SIMPLE方法制定的先决条件战略。对于原始系统,我们采用专门为不合格模层开发的定制多格方法。最后,对拟议先决条件的比较是通过若干数字实验进行的。