Hearts subjected to volume overload (VO) are prone to detrimental anatomical and functional changes in response to elevated mechanical stretches, ultimately leading to heart failure. Experimental findings increasingly emphasize that organ-scale changes following VO cannot be explained by myocyte growth alone, as traditionally proposed in the literature. Collagen degradation, in particular, has been associated with left ventricular adaptation in both acute and chronic stages of VO. These hypotheses remain to be substantiated by comprehensive mechanistic evidence, and the contribution of each constituent to myocardial growth and remodeling (G&R) processes is yet to be quantified. In this work, we establish a hybrid G&R framework in which we integrate a mixture-based constitutive model with the kinematic growth formulation. This multi-constituent model enables us to mechanistically assess the relative contributions of collagen and myocyte changes to alterations in tissue properties, ventricular dimensions, and growth phenotype. Our numerical results confirm that collagen dynamics control the passive mechanical response of the myocardium, whereas myocytes predominantly impact the extent and the phenotype of eccentric hypertrophy. Importantly, collagen degradation exacerbates myocyte hypertrophy, demonstrating a synergistic interplay that accelerates left ventricular progression toward diastolic dysfunction. This work constitutes an important step towards an integrated characterization of the early compensatory stages of VO-induced cardiac G&R.
翻译:暂无翻译