We consider the consensus interdiction problem (CIP), in which the goal is to maximize the convergence time of consensus averaging dynamics subject to removing a limited number of network edges. We first show that CIP can be cast as an effective resistance interdiction problem (ERIP), in which the goal is to remove a limited number of network edges to maximize the effective resistance between a source node and a sink node. We show that ERIP is strongly NP-hard, even for bipartite graphs of diameter three with fixed source/sink edges, and establish the same hardness result for the CIP. We then show that both ERIP and CIP cannot be approximated up to a (nearly) polynomial factor assuming exponential time hypothesis. Subsequently, we devise a polynomial-time $mn$-approximation algorithm for the ERIP that only depends on the number of nodes $n$ and the number of edges $m$, but is independent of the size of edge resistances. Finally, using a quadratic program formulation for the CIP, we devise an iterative approximation algorithm to find a local optimal solution for the CIP.
翻译:我们考虑的是共识阻截问题(CIP ), 其目标是最大限度地缩短共识平均动态的趋同时间,但须消除有限的网络边缘。 我们首先表明,CIP 能够被描绘成一个有效的阻截问题(ERIP ), 目标是消除数量有限的网络边缘, 以最大限度地扩大源节点和汇节点之间的有效抵抗力。 我们显示, ERIP 是非常硬的NP-硬的, 即使是直径三号、有固定源/汇边缘的双面图, 并且为 CIP 设定同样的硬性效果。 然后, 我们显示, ERIP 和 CIP 两者无法在假定指数时间假设的情况下, 接近于( 近近) 多元性因素 。 随后, 我们为ERIP 设计了一个多元性- 时间 $mn$- accession 算法, 仅取决于节点数和边缘数 $m$, 但与边缘大小无关, 。 最后, 我们用 CIP 的四边式程序配置, 我们为 CIP 找到一个本地最佳解决方案 。