The Sparse GEneral Matrix-Matrix multiplication (SpGEMM) $C = A \times B$ is a fundamental routine extensively used in domains like machine learning or graph analytics. Despite its relevance, the efficient execution of SpGEMM on vector architectures is a relatively unexplored topic. The most recent algorithm to run SpGEMM on these architectures is based on the SParse Accumulator (SPA) approach, and it is relatively efficient for sparse matrices featuring several tens of non-zero coefficients per column as it computes C columns one by one. However, when dealing with matrices containing just a few non-zero coefficients per column, the state-of-the-art algorithm is not able to fully exploit long vector architectures when computing the SpGEMM kernel. To overcome this issue we propose the SPA paRallel with Sorting (SPARS) algorithm, which computes in parallel several C columns among other optimizations, and the HASH algorithm, which uses dynamically sized hash tables to store intermediate output values. To combine the efficiency of SPA for relatively dense matrix blocks with the high performance that SPARS and HASH deliver for very sparse matrix blocks we propose H-SPA(t) and H-HASH(t), which dynamically switch between different algorithms. H-SPA(t) and H-HASH(t) obtain 1.24$\times$ and 1.57$\times$ average speed-ups with respect to SPA respectively, over a set of 40 sparse matrices obtained from the SuiteSparse Matrix Collection. For the 22 most sparse matrices, H-SPA(t) and H-HASH(t) deliver 1.42$\times$ and 1.99$\times$ average speed-ups respectively.


翻译:Sparse General 矩阵- Matrix 乘法 (SpGEMM) $42 = A = A 计数 C 列乘以 1 乘以 C 列时, 以零系数计数 。 但是, 处理仅包含几部非零 的 机器学习 或 图形分析 等域的基本常规 B$ 。 尽管相关, SpGEM 在矢量结构中高效执行 SpGEM 是一个相对未探索的专题。 运行 SpGEMM 在这些结构中运行 SpGEM 的最近算法基于 SParse Across 累积( SPARM ) 方法, 而对于以几部非零系数计算每列数个非零系数的稀释矩阵来说相对有效。 然而, 当处理仅包含几部非零位的 IMFlexcal 的矩阵时, 状态算法不能完全利用长期矢量的 SVAS- sal- sal- sal- sal- sal- sal lavedal 和 SH- sal- h- h- sal- sal- sal- h- sal- sal- sal- sal- sal- h- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- 和 和 和 和 和 和 和 和 和 和 sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- s- sal- s- s- sal- sal- sal- sal- sal- sal- sal- sal- s</s>

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月25日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员