项目名称: 新型双极性给受体共聚物半导体的设计,合成与光电性质研究

项目编号: No.21203212

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 顾春玲

作者单位: 中国科学院化学研究所

项目金额: 27万元

中文摘要: 本课题旨在以双极性有机半导体的分子前线轨道能级为指导:能隙 < 1.8eV,LUMO 能级在-4.0到 -4.3eV之间,结合B3LYP/6-31G(D)等理论计算方法,以噻吩类化合物为给体,含强吸电子基团的分子为受体,设计新型的[D-A1- (D)x-A2]n型给体-受体(D-A)共聚物分子, 合成双极性有机半导体材料,并研究其光电性质。并通过创建新的缺电子共轭单元,发展偶联方法,改变给受体的连接位置和方式等方法,改变分子的结构以调控聚合物的分子前线轨道能级、溶解性和成膜性。 制备OFET器件,采用Keithley 4200半导体电学测试系统测试D-A 聚合物分子的载流子迁移率。 研究聚合物双极性性质、稳定性、载流子迁移率与分子结构,聚合物微观结构和聚合物形态之间的关系,并以此指导设计、合成和筛选出新型的高迁移率、空气稳定的、可溶液加工的双极性有机半导体材料。

中文关键词: 聚合物半导体;双极性;薄膜晶体管;全聚合物太阳能电池;

英文摘要: This project is proposed to design,synthesize and optoelectronic characterize of new [D-A1-(D)x-A2]n-type ambipolar organic semiconductors, in which biceptor Donor-Acceptor copolymers thiophenes are used as donors while molecules with strong electron-withdrawing groups as acceptors. The frontier molecule orbital energy levels of the target structures, which is to be compulated by B3LYP/6-31G(D), are designed to fulfill that of ambipolar organic semiconductors,that energy gap is below 1.8 eV and LUMO level is between -4.0 and -4.3eV. Change the molecular structure to tune the frontier molecular orbital energy levels, solubility and film-forming property by design of new electron-withdrawing conjugate units, coupling methods and altering the coupling positions between the donors and acceptors. OFETs were fabricated with the synthesized semiconductors to evaluate their charge-transport characteristics by Semiconductor electrical test system Keithley 4200. Research on the relationship between the ambipolarity, air stability and charge mobility of the copolymers and their microstructure,morphology, molecular structures, which will instruct the design, synthesis and screening of new ambipolar semiconductors with high mobility, air stability and solution processability.

英文关键词: polymer semiconductors;ambipolar;thin film transistor;all polymer solar cells;

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
13+阅读 · 2021年8月28日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
13+阅读 · 2021年8月28日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员