Within decentralized organizations, the local demand for recommender systems to support business processes grows. The diversity in data sources and infrastructure challenges central engineering teams. Achieving a high delivery velocity without technical debt requires a scalable approach in the development and operations of recommender systems. At the HEINEKEN Company, we execute a machine learning operations method with five best practices: pipeline automation, data availability, exchangeable artifacts, observability, and policy-based security. Creating a culture of self-service, automation, and collaboration to scale recommender systems for decentralization. We demonstrate a practical use case of a self-service ML workspace deployment and a recommender system, that scale faster to subsidiaries and with less technical debt. This enables HEINEKEN to globally support applications that generate insights with local business impact.
翻译:在权力下放的组织内,当地对支持业务流程的推荐系统的需求在增加。数据来源和基础设施的多样性对中央工程团队提出了挑战。实现高交付速度而无技术债务,需要在推荐系统的发展和运作中采取可扩展的方法。在HEINEKEN公司,我们实施机器学习操作方法,有五种最佳做法:管道自动化、数据可用性、可交换的艺术品、可观察性和基于政策的安全。创造自助服务、自动化和协作文化,以扩大推荐系统的规模,实现权力下放。我们展示了一种实用的自用ML工作空间部署和建议系统,这种系统可以更快地扩展至子公司,技术债务较少。这使得HEINEKEN能够在全球支持能够产生具有当地商业影响的洞察力的应用。