This paper addresses the problem of combining Byzantine resilience with privacy in machine learning (ML). Specifically, we study whether a distributed implementation of the renowned Stochastic Gradient Descent (SGD) learning algorithm is feasible with both differential privacy (DP) and Byzantine resilience. To the best of our knowledge, this is the first work to tackle this problem from a theoretical point of view. Intuitively, it should be straightforward to merge standard solutions for these two (seemingly) orthogonal issues. However, a key finding of our analyses is that classical approaches to Byzantine resilience and DP in ML are incompatible. More precisely, we show that a direct composition of these techniques makes the guarantees of the resulting SGD algorithm depend unfavourably upon the number of parameters in the ML model, making the training of large models practically infeasible. We validate our theoretical results through numerical experiments on publicly-available datasets; showing that it is impractical to simultaneously ensure DP and Byzantine resilience even for reasonable model sizes.


翻译:本文探讨了将拜占庭复原力与机器学习隐私相结合的问题。 具体地说,我们研究的是,在有差异的隐私(DP)和拜占庭复原力(Byzantine)的情况下,分散实施著名的Stochastic Gradient Fround(SGD)学习算法是否可行。 据我们所知,这是从理论角度解决这一问题的首份工作。 直观地说,将这两个(似乎)正统问题的标准解决方案合并起来应该是直截了当的。 然而,我们分析的一个重要发现是,在ML对拜占庭复原力和DP的典型方法不相容。 更准确地说,我们表明,这些技术的直接构成使得由此形成的SGD算法的保障不适宜于ML模型的参数数量,使得大型模型的培训实际上不可行。 我们通过在公开提供的数据集上进行数字实验来验证我们的理论结果; 表明,确保DP和Byzantine的适应能力,即使是在合理的模型大小上也是不切实际的。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员