Systemic risk measures have been shown to be predictive of financial crises and declines in real activity. Thus, forecasting them is of major importance in finance and economics. In this paper, we propose a new forecasting method for systemic risk as measured by the marginal expected shortfall (MES). It is based on first de-volatilizing the observations and, then, calculating systemic risk for the residuals using an estimator based on extreme value theory. We show the validity of the method by establishing the asymptotic normality of the MES forecasts. The good finite-sample coverage of the implied MES forecast intervals is confirmed in simulations. An empirical application to major US banks illustrates the significant time variation in the precision of MES forecasts, and explores the implications of this fact from a regulatory perspective.


翻译:系统性风险指标已被证明对金融危机和实际活动下降具有预测能力。因此,在金融和经济学领域,预测系统性风险具有重要意义。在本文中,我们提出了一种新的系统性风险预测方法,该方法是以边际预期损失(MES)为衡量指标。该方法基于首先去除观测波动性,然后使用极值理论的估计值计算残差的系统性风险。我们通过建立MES预测的渐近正态性来展示该方法的有效性。模拟结果证实了预测间隔的良好有限采样覆盖率。美国主要银行的实证应用说明了MES预测的精度时间变化的显著性,并探讨了该事实对监管的影响。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
一派讨论·你都用什么 app 看天气?
少数派
0+阅读 · 2022年8月16日
一派讨论·618 你打算买什么?
少数派
0+阅读 · 2022年5月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
110+阅读 · 2020年2月5日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员