Optical computing systems provide high-speed and low-energy data processing but face deficiencies in computationally demanding training and simulation-to-reality gaps. We propose a model-free optimization (MFO) method based on a score gradient estimation algorithm for computationally efficient in situ training of optical computing systems. This approach treats an optical computing system as a black box and back-propagates the loss directly to the optical computing weights' probability distributions, circumventing the need for a computationally heavy and biased system simulation. Our experiments on a single-layer diffractive optical computing system show that MFO outperforms hybrid training on the MNIST and FMNIST datasets. Furthermore, we demonstrate image-free and high-speed classification of cells from their phase maps. Our method's model-free and high-performance nature, combined with its low demand for computational resources, expedites the transition of optical computing from laboratory demonstrations to real-world applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员