We propose a novel robust decentralized graph clustering algorithm that is provably equivalent to the popular spectral clustering approach. Our proposed method uses the existing wave equation clustering algorithm that is based on propagating waves through the graph. However, instead of using a fast Fourier transform (FFT) computation at every node, our proposed approach exploits the Koopman operator framework. Specifically, we show that propagating waves in the graph followed by a local dynamic mode decomposition (DMD) computation at every node is capable of retrieving the eigenvalues and the local eigenvector components of the graph Laplacian, thereby providing local cluster assignments for all nodes. We demonstrate that the DMD computation is more robust than the existing FFT based approach and requires 20 times fewer steps of the wave equation to accurately recover the clustering information and reduces the relative error by orders of magnitude. We demonstrate the decentralized approach on a range of graph clustering problems.
翻译:我们建议采用与广受欢迎的光谱集成法相当的新型强势分散式图形群集算法。 我们提议的方法使用基于通过图中传播波浪的现有波等式群集算法。 但是,我们提议的方法不是在每个节点使用快速的Fourier变换(FFT)计算法,而是利用Koopman操作员框架。 具体地说,我们表明,在每一个节点,在图表中传播波,然后在每个节点进行局部动态模式分解(DMD)计算,能够重新获取图 Laplaceian 的双元值和本地的断源元组件,从而为所有节点提供本地的组群分配。 我们表明,DMD计算法比现有的FFT计算法更加稳健,需要将波方方的步伐减少20倍,以准确恢复集集成信息并减少数量级的相对错误。 我们展示了在一系列图集问题上的分散式方法。