We showcase a collection of practical strategies to deal with a problem arising from an analysis of integral estimators derived via quasi-Monte Carlo methods. The problem reduces to a triple binomial sum, thereby enabling us to open up the holonomic toolkit, which contains tools such as creative telescoping that can be used to deduce a recurrence satisfied by the sum. While applying these techniques, a host of issues arose that partly needed to be resolved by hand. In other words, no creative telescoping implementation currently exists that can resolve all these issues automatically. Thus, we felt the need to compile the different strategies we tried and the difficulties that we encountered along the way. In particular, we highlight the necessity of the certificate in these computations and how its complexity can greatly influence the computation time.


翻译:我们展示了一整套实际战略,以应对分析通过准蒙特卡洛方法得出的整体估计数据所产生的问题。 这个问题被减为三重二相总和,从而使我们能够打开全金组工具包,该工具包包含一些工具,例如可以用来推断该数字所满足的重现的创造性远程评估工具。在应用这些技术时,出现了一系列需要用手工解决的部分问题。换句话说,目前不存在能够自动解决所有这些问题的创造性的远程评估实施。 因此,我们认为需要汇编我们尝试过的不同战略和我们在过程中遇到的困难。 特别是,我们强调这些计算过程中证书的必要性及其复杂性如何能极大地影响计算时间。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
53+阅读 · 2018年12月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Top
微信扫码咨询专知VIP会员