In this paper, we propose a novel optimization-based trajectory planner that utilizes spherical harmonics to estimate the collision-free solution space around an agent. The space is estimated using a constrained over-determined least-squares estimator to determine the parameters that define a spherical harmonic approximation at a given time step. Since spherical harmonics produce star-convex shapes, the planner can consider all paths that are in line-of-sight for the agent within a given radius. This contrasts with other state-of-the-art planners that generate trajectories by estimating obstacle boundaries with rough approximations and using heuristic rules to prune a solution space into one that can be easily explored. Those methods cause the trajectory planner to be overly conservative in environments where an agent must get close to obstacles to accomplish a goal. Our method is shown to perform on-par with other path planners and surpass these planners in certain environments. It generates feasible trajectories while still running in real-time and guaranteeing safety when a valid solution exists.
翻译:在本文中, 我们提出一个新的基于优化的轨迹规划器, 使用球体调和器来估计一个物剂周围的无碰撞解决方案空间。 空间的估算使用一个限制过强的最小方位估计器来确定某一时间步骤确定球体口状近近近的参数。 由于球体调和器产生恒星- convex形状, 计划器可以考虑在给定半径内该物剂的视线中的所有路径。 这与其他最先进的规划器形成对比, 后者通过粗略近似来估计障碍界限, 并使用超自然规则将一个溶液空间推入一个容易探索的空间。 这些方法使得轨迹规划器在环境中过于保守, 因为一个物剂必须接近一个目标。 我们的方法可以与其他路径规划器一起在不同的环境中运行, 并在某些环境中超过这些规划器。 它产生可行的轨迹, 同时在实时运行, 并在有效解决方案存在时保证安全 。