Text-based games(TBG) are complex environments which allow users or computer agents to make textual interactions and achieve game goals.In TBG agent design and training process, balancing the efficiency and performance of the agent models is a major challenge. Finding TBG agent deep learning modules' performance in standardized environments, and testing their performance among different evaluation types is also important for TBG agent research. We constructed a standardized TBG agent with no hand-crafted rules, formally categorized TBG evaluation types, and analyzed selected methods in our environment.
翻译:以文字为基础的游戏(TBG)是复杂的环境,用户或计算机代理商可以进行文字互动,实现游戏目标。 在TBG代理商设计和培训过程中,平衡代理商模型的效率和绩效是一项重大挑战。 在标准化环境中找到TBG代理商深层次学习模块的性能,并在不同的评价类型中测试其性能,对于TBG代理商的研究也很重要。 我们建立了一个标准化的TBG代理商,没有手工制作的规则,正式分类TBG评估类型,并分析了我们环境中的选定方法。