Human preference or taste within any domain is usually a difficult thing to identify or predict with high probability. In the domain of chess problem composition, the same is true. Traditional machine learning approaches tend to focus on the ability of computers to process massive amounts of data and continuously adjust 'weights' within an artificial neural network to better distinguish between say, two groups of objects. Contrasted with chess compositions, there is no clear distinction between what constitutes one and what does not; even less so between a good one and a poor one. We propose a computational method that is able to learn from existing databases of 'liked' and 'disliked' compositions such that a new and unseen collection can be sorted with increased probability of matching a solver's preferences. The method uses a simple 'change factor' relating to the Forsyth-Edwards Notation (FEN) of each composition's starting position, coupled with repeated statistical analysis of sample pairs from both databases. Tested using the author's own collections of computer-generated chess problems, the experimental results showed that the method was able to sort a new and unseen collection of compositions such that, on average, over 70% of the preferred compositions were in the top half of the collection. This saves significant time and energy on the part of solvers as they are likely to find more of what they like sooner. The method may even be applicable to other domains such as image processing because it does not rely on any chess-specific rules but rather just a sufficient and quantifiable 'change' in representation from one object to the next.
翻译:在任何域内的人类偏好或口味通常很难辨别或预测,概率很高。 在象棋问题构成领域, 情况也一样。 传统的机器学习方法往往侧重于计算机处理大量数据和在人工神经网络中不断调整“重量”的能力, 以更好地区分两组对象。 与象棋构成相比, 与象棋构成没有明显区别, 更不明显地区分什么构成一个或什么不构成; 更不明显地区分一个或一个好的或一个较差的。 我们建议一种计算方法, 能够从现有的“ 喜欢的” 和“ 不喜欢的” 组成数据库中学习。 这样, 新的和看不见的收集方法可以随着匹配求解者偏好者偏好者的偏好而分辨。 这种方法使用简单的“ 改变因素”, 来更好地区分两种构成的“ Forsyth- Ewards” 位置, 再加上对两个数据库样本的反复统计分析。 我们用作者自己收集的计算机生成的象棋子问题一样, 实验结果显示, 方法能够将新的和看不见的棋子组成进行新的和无形的变更精确的变换, 。 在平均的域中, 的收集中, 超过70个域中, 可能找到一个或更多的方法在最高级的方法在最高级的方法在最高级的域中, 的收集法则在最高级的周期中, 中, 的顺序是, 的法则在最高级的方法在最高级的方法是,, 中,, 的顺序是, 也就是在最高级的顺序是, 的顺序是, 的顺序是,,,, 最接近于在最接近的方法在最接近的方法是, 最接近的方法是,,, 的顺序是,, 的顺序是, 的顺序是, 的方法是, 和最接近的方法是, 的方法是, 最高级的方法是, 和最接近于方法, 最接近于方法, 最接近的方法是, 最高级方法, 最高级方法, 最高级的方法是, 最高级的方法是, 的方法是, 最接近的方法是, 最高级和最高级的方法是, 最高级的方法是, 最接近的方法是, 最高级和最高级和最高级和最高级的方法在