We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott's $D_\infty$ model of the untyped $\lambda$-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe $\mathcal{U}_1$ and suprema of directed families with indexing type in the first universe $\mathcal{U}_0$. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott's $D_\infty$ again gives a large, locally small, algebraic dcpo with small directed suprema.


翻译:在没有Voevodsky 重新定义轴心时,我们在建设性的单一基础中发展了域内理论。 在以前朝这个方向开展的工作中,我们根据直接完整的表层( dcpos) 构建了PCF的斯科特模型,并证明了其计算是否适当。 我们在这里进一步考虑代数和连续的 dcpos 。 我们在这里进一步考虑代数和连续的 dcpos, 并建造了未类型 $\ lambda$- calculus 的Scott $D ⁇ infty 美元模型。 在预想基础中处理大小问题的通用方法是与信息系统或抽象基础或正式表层而不是 dcpos 合作, 以及近似的关系。 我们在这里接受dcpos 可能是大型的, 并且与类型世界一起为此负责。 例如,在Scott 模型中, dcpos 在第二个宇宙中, 运算出一个小的运量, 和直径的直径, 直系的直系的直系, 直系的直系, 直系直系直系。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
还在修改博士论文?这份《博士论文写作技巧》为你指南
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
相关论文
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Top
微信扫码咨询专知VIP会员