This paper presents a novel way to apply mathematical finance and machine learning (ML) to forecast stock options prices. Following results from the paper Quasi-Reversibility Method and Neural Network Machine Learning to Solution of Black-Scholes Equations (appeared on the AMS Contemporary Mathematics journal), we create and evaluate new empirical mathematical models for the Black-Scholes equation to analyze data for 92,846 companies. We solve the Black-Scholes (BS) equation forwards in time as an ill-posed inverse problem, using the Quasi-Reversibility Method (QRM), to predict option price for the future one day. For each company, we have 13 elements including stock and option daily prices, volatility, minimizer, etc. Because the market is so complicated that there exists no perfect model, we apply ML to train algorithms to make the best prediction. The current stage of research combines QRM with Convolutional Neural Networks (CNN), which learn information across a large number of data points simultaneously. We implement CNN to generate new results by validating and testing on sample market data. We test different ways of applying CNN and compare our CNN models with previous models to see if achieving a higher profit rate is possible.
翻译:本文介绍了运用数学融资和机器学习(ML)预测股票期权价格的一种新颖方法。根据论文“准可更新方法和神经网络机器学习解决黑分数法”的结果(出现在AMS当代数学杂志上),我们为黑分方程创建并评估了新的实验数学模型,用于分析92 846家公司的数据。我们及时将黑分方程作为一个错误的反向问题加以解决,使用准可更新方法(QRM)预测未来一天的选择价格。对于每家公司,我们有13个要素,包括每日股票和选择价格、波动性、最小化等等。因为市场非常复杂,没有完美的模型,我们用ML来培训算法来进行最佳预测。我们目前的研究阶段将QRM和Concialal Neural网络(CNN)结合起来,在大量数据点同时学习信息。我们实施了CNNCM,通过验证和测试我们之前的抽样模型来产生新的结果。我们用不同的测试方法来比较CNISM,如果能够实现之前的更高价格。