Let $A$ be a rectangular matrix of size $m\times n$ and $A_1$ be the random matrix where each entry of $A$ is multiplied by an independent $\{0,1\}$-Bernoulli random variable with parameter $1/2$. This paper is about when, how and why the non-Hermitian eigen-spectra of the randomly induced asymmetric matrices $A_1 (A - A_1)^*$ and $(A-A_1)^*A_1$ captures more of the relevant information about the principal component structure of $A$ than via its SVD or the eigen-spectra of $A A^*$ and $A^* A$, respectively. Hint: the asymmetry inducing randomness breaks the echo-chamber effect that cripples the SVD. We illustrate the application of this striking phenomenon on the low-rank matrix completion problem for the setting where each entry is observed with probability $d/n$, including the very sparse regime where $d$ is of order $1$, where matrix completion via the SVD of $A$ fails or produces unreliable recovery. We determine an asymptotically exact, matrix-dependent, non-universal detection threshold above which reliable, statistically optimal matrix recovery using a new, universal data-driven matrix-completion algorithm is possible. Averaging the left and right eigenvectors provably improves the recovered matrix but not the detection threshold. We define another variant of this asymmetric procedure that bypasses the randomization step and has a detection threshold that is smaller by a constant factor but with a computational cost that is larger by a polynomial factor of the number of observed entries. Both detection thresholds shatter the seeming barrier due to the well-known information theoretical limit $d \asymp \log n$ for matrix completion found in the literature.


翻译:美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 的 矩形 矩阵 美元 美元 美元 美元 美元 美元 的 随机矩阵 美元 美元 美元 美元 美元 美元 美元 美元 的 随机矩阵 美元 美元 美元 美元 美元 美元 的 美元 美元 美元 的 方形 方形 以独立的 $0, 1美元 美元 美元 美元 美元 美元 的 方形 随机变量 参数 1/2 美元 美元 。 本文涉及的是随机引致超声波效应的时间、 如何和为什么造成超声波效应 美元 1美元 (A - A_ 1) 美元 和 美元 (A_ 1 美元) 的 方形形形形形形 矩阵, 以概率 值 值 值 的 值 值 值 值 的 值 值 值 值 的 值 值 值 的 值 值 值 值 值 值 值 值 值 值 的 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 的 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 的 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值

0
下载
关闭预览

相关内容

【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
13+阅读 · 2019年4月9日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员