We study the elastic time-harmonic wave scattering problems on unbounded domains with boundaries composed of finite collections of disjoints finite open arcs (or cracks) in two dimensions. Specifically, we present a fast spectral Galerkin method for solving the associated weakly- and hyper-singular boundary integral equations (BIEs) arising from Dirichlet and Neumann boundary conditions, respectively. Discretization bases of the resulting BIEs employ weighted Chebyshev polynomials that capture the solutions' edge behavior. We show that these bases guarantee exponential convergence in the polynomial degree when assuming analyticity of sources and arcs geometries. Numerical examples demonstrate the accuracy and robustness of the proposed method with respect to number of arcs and wavenumber.
翻译:我们用两个维度的边界来研究在无边界区域散布弹性时-时波波散落的问题,边界包括有限的断裂有限开弧(或裂缝)集合。具体地说,我们提出了一种快速光谱加列金方法,用以分别解决Drichlet 和 Neumann 边界条件引起的相关弱和超离子边界整体方程式(BIEs ) 。 由此形成的BIE的分解基础使用经过加权的Chebyshev 多元米亚来捕捉解决方案的边缘行为。 我们表明,这些基数在假设源和弧的分析性时,可以保证多角度的指数趋同。 数字实例显示了所提议的方法在弧号和波数方面的准确性和稳健性。