We present DeepDECS, a new method for the synthesis of correct-by-construction discrete-event controllers for autonomous systems that use deep neural network (DNN) classifiers for the perception step of their decision-making processes. Despite major advances in deep learning in recent years, providing safety guarantees for these systems remains very challenging. Our controller synthesis method addresses this challenge by integrating DNN verification with the synthesis of verified Markov models. The synthesised models correspond to discrete-event controllers guaranteed to satisfy the safety, dependability and performance requirements of the autonomous system, and to be Pareto optimal with respect to a set of optimisation objectives. We use the method in simulation to synthesise controllers for mobile-robot collision mitigation and for maintaining driver attentiveness in shared-control autonomous driving.
翻译:我们介绍一种新的方法DeepDECS,用于合成自主系统的正确构建离散事件控制器。这些自主系统使用深度神经网络(DNN)分类器作为其决策过程的感知步骤。尽管最近深度学习取得了重大进展,但为这些系统提供安全保障仍然非常具有挑战性。我们的控制器合成方法通过将DNN验证与验证过的马尔可夫模型的合成相结合来解决这一挑战。合成的模型对应于离散事件控制器,保证满足自主系统的安全,可靠性和性能要求,并且对于一组最优化目标来说是帕累托最优的。我们在模拟中使用该方法为移动机器人碰撞减轻和在共享控制的自主驾驶中维护驾驶员注意力合成控制器。