We numerically benchmark methods for computing harmonic maps into the unit sphere, with particular focus on harmonic maps with singularities. For the discretization we compare two different approaches, both based on Lagrange finite elements. While the first method enforces the unit-length constraint only at the Lagrange nodes, the other one adds a pointwise projection to fulfill the constraint everywhere. For the solution of the resulting algebraic problems we compare a nonconforming gradient flow with a Riemannian trust-region method. Both are energy-decreasing and can be shown to converge globally to a stationary point of the Dirichlet energy. We observe that while the nonconforming and the conforming discretizations both show similar behavior, the second-order trust-region method needs less iterations than the solver based on gradient flow.
翻译:我们用数字基准方法将调音图计算成单元领域,特别侧重于有独特性的调和图。对于分解,我们比较了两种不同的方法,这两种方法都基于拉格朗定点元素。虽然第一种方法只在拉格朗节点强制使用单位长度限制,而另一种方法则增加了一个点性预测,以满足各地的制约。为了解决由此产生的代数问题,我们比较了不相容的梯度流与里格曼尼安信任区-区域方法。两者都是能源淡化,可以显示为全球接近diriclet能源的固定点。我们观察到,虽然不相容和符合的离异性都表现出相似的行为,但二级信任区方法比基于梯度流的溶解器需要较少的迭代。